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Chapter 1

What is YAeHMOP and why should I use
it?

YAeHMOP is a group of programs for performing extended Hiickel calculations [1, 2] and analyzing
and visualizing the results. The programs bind and viewkel form the core of the package.

1.1 bind

bind is the program which performs the actual extended Hiickel calculations. It can be used to
perform calculations on both isolated molecules and extended systems of 1, 2, or 3 dimensions.

bind is an almost complete rewrite of the program new3 and is written almost entirely in C
(the routines for evaluating overlap matrix elements and diagonalizing the Hamiltonian matrix from
new3 remain) Because of the fact that all memory used in the program is allocated dynamically,
there are no restrictions on the number of atoms, K points, or orbitals which can be used (this isn’t
totally true: there is a limit of 20 user defined atom types). The only limitation is the amount of
memory that your computer has and the length of time which you are willing to wait for the run
to finish.

Because of the fact that bind is written to be easy to maintain and understand, we have not
spent a lot of time trying to make it fast. This isn’t to say that it’s slow, but it certainly could be
faster.

The input files to bind are keyword based, so, with a few exceptions, it doesn’t really matter
what order things are in. In addition, white space (spaces, tabs, etc.) in the input are ignored.

Here are just a few reasons to use bind :

e Built in parameters for most elements.
e Gaussian style Z-matrix, standard Cartesian, or crystallographic coordinate input.
e Automatic generation of points along a reaction coordinate (for Walsh diagrams).

e Particular pieces of information can be monitored at each step along a reaction coordinate (e.g.
the reduced overlap population between two atoms can be printed at each step along a Walsh
diagram).

e Automagic generation of K points along symmetry lines for band structures.
e Orientation independent determination of symmetry elements.
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e More symmetry elements are found (up through Sg).

e DOS and COOQOP data are in ASCII format, so you can plot the data with any plotting pro-
gram... though you will want to use viewkel :-).

1.2 viewkel

viewkel is an X-Windows based, interactive program for displaying and printing the results obtained
using bind (though there’s no reason that it can’t be made to display data from other programs).
Some of viewkel s features are:

e Interactive 3-D manipulation of molecular structures.

e Support for extended systems: “grow” crystals of any size.

e Postscript output.

e It doesn’t use Motif.

e Ability to place as many structures and graphs as desired on the same page.
e Numerous options for displaying molecules and MO surfaces.

e Automatic generation of input files for rayshade , a freeware raytracing program. This can be
used to get extra gratuitous color 3D plots.

e The official Roald Hoffmann seal of approval on the way the output looks. (NOTE: this
feature is still under development.)

Both bind and viewkel were written to be as easy to port to other flavors of UNIX as possible.
This is one of the reasons why viewkel doesn’t use any of the snazzy user interface libraries which
are available.



Chapter 2

What’s new in version 3.0?7

Quite a few new features have been added to YAeHMOP and one or two 'problems’ have gone away

The YAeHMOP development team has also increased in size as of this release ... so please use the
version 3.0 citations when publishing results generated with YAeHMOP . Thanks !

Additions to bind include ...
e f-orbitals ... at last !!!
e COOP’s in a fragment molecular orbital (FMO) basis

e Hamilton population analysis: a tool for total energy partitioning built on the orbital, atom
and fmo COOP options offered in YAeHMOP [3, 4, 5]

also the '’known bugs’ section of the ’those damn bugs’ chapter of the version 2.0 manual has van-
ished ... so there are absolutely NO bugs left in YAeHMOP :-)



Chapter 3

What’s new in version 2.07

A bunch of stuff has been added to this version. This is almost certainly the last non-bug fix release
of the programs until I graduate.

e Numerous bug fixes.

e Much improved MO plotting. Including Jorgenson and Salem (or CACAO) style plots that
can be rotated in “real-time” to find the optimal viewing angle. Also included are contour
plots of MOs.

e Fragment Crystal Orbital analysis, a new interpretive tool for crystalline systems.

e A new keyword allowing diagonalization of the hamiltonian without including the overlap
matrix.

e viewkel now provides distances, angles, and dihedral angles between selected atoms in molecules.

e There are several new options for display of molecules in viewkel . Including tube bonds and
pseudo-3D crosses.



Chapter 4

What’s new in version 1.27

e Support for using LAPACK routines to diagonalize the matrices.
e A version for Power Macs.

e | have more faith in the MO drawings now. The normalization constants were right and now
that I evaluate them in atomic units the pictures look right too. Thanks Grisha!

e More juicy raisins in every bite!

e Other things that escape me at the moment.



Chapter 5

Overview of how a calculation is done

So you’ve come up with a cool problem (or it was assigned in class), and you want to do an extended
Hiickel calculation using YAeHMOP . The goal of this section is to get you familiar with the basic
process for moving from initial idea to final graphs and pictures.

The first step is to set up your input file. Basically, the input file contains a specification of the
geometry of your molecule or extended system, the number of electrons in the system, any special
information needed (the ranges of Walsh variables, any special parameters you may want to use,
etc.) and any printing options that you want to set.

Here’s a minimal input file example called foo.bind

; the name of the job
A silly example: a square of H atoms

; specification that this is a molecular problem
Molecular

;the geometry

geometry

4

1 HO0.00.00.0

2H1.0 0.0 0.0
3H1.01.00.0

4 H0.01.00.0

; The number of electrons
Electrons

4

; printing options

PRINT

Overlap Population

Reduced overlap population
charge matrix

wavefunction

end_print

The contents of this file will be explained later.



To run the file execute the following command:

bind foo.bind

This will create two output files: foo.bind.status has some status information; foo.bind.out
has all the results in it.

That’s it!

If you had done a Walsh diagram or an average properties calculation then there are some utility
programs that need to be run to get the data in shape to be displayed. These will be discussed a
later.

The data and results are now ready to be displayed using viewkel or your favorite plotting
program.
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Chapter 6

The input file

Like many other programs, the input file for bind is based on keywords. This allows the file to be
broken into logical blocks and makes the format for constructing the file a little less rigid. Each
keyword is described below. Note that the input routine (the parser) is not case sensitive when
dealing with keywords, i.e. Electrons, electrons, and ELECTRONS will all work.

Any line in the input file which begins with a semicolon is ignored. This allows comments to be
put into the input file. It also makes it easy to temporarily change the contents of a file, just put a
semicolon in front of anything you don’t want the program to read. Blank lines and spaces in the
input are also ignored.

The first non-empty line should contain the title of the job.

6.1 Keywords

The remainder of the file contains the keywords which control the job. These keywords are all
described below.
The notation used is as follows:

e Words in sans-serif style, such as foo, are keywords.

e Words in slanted type, such as bar , are variable names used within the program. They are
used for convenience.

6.1.1 Geometry (required)

The line following this keyword should have the number of atoms: num_atoms .

If the line containing the keyword Geometry also contains the string Z Matrix then the input is
take to be in Gaussian style Z matrix format. If the line containing Geometry also contains the
string Crystallographic then the input is taken to be in fractional coordinates and the Crystal Spec
keyword must be specified. Otherwise the input is assumed to be in Cartesian coordinates. If you
are unfamiliar with Z matrix input, it is described in a later chapter of this document.

The following num_atoms lines should contain the atomic coordinates and types in the following
fashion:

e Z-matrix Input: number atom_label refl r ref2 alpha ref3 beta
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e Cartesian Input: number atom_label X Y Z

e Crystallographic Input: number atom_label X Y Z

number is the number of the atom. There is no reason why the atoms in the list have to be in
increasing numeric order.

atom_label is the label for the atom, it should be one or two characters long. If the atom label
is a single asterix (*), then the atom is taken to be a custom type and a symbol and parameters
should be provided for it in the Parameters section. If the atom label is an ampersand (&), then the
atom is taken to be a dummy atom.

The other variables are the coordinates for the atom in whatever system is being used. If a
reaction coordinate is being traced out (see keyword Walsh below), any coordinate which is an
integer multiple of 1000 is assumed to be variable. For example: placing 2000 as the X coordinate
of some atom would cause that coordinate to take on the values of the second Walsh variable.

6.1.2 Lattice (mandatory for extended systems)

NOTE: If this keyword appears in the file it must follow the Geometry keyword in the input file.

These are the lattice parameters. The keyword should be followed by a line containing the
dimensionality of the crystal. The next line contains the number of overlaps considered along each
lattice direction. The following lines should contain the lattice vectors in the form: atoml atom2 ,
where atom1 is the beginning of the vector (it is inside the unit cell) and atom2 is the end of the
vector (it is outside the unit cell).

NOTE: The ends of the lattice vectors must be the highest numbered atoms in the geometry
specification. For example, if there are are 6 atoms defined for a 3 dimensional unit cell, then the
ends of the three lattice vectors must be numbers 4, 5, and 6.

Only a number of lattice vectors equal to the dimensionality of the crystal need to be provided.
If you feel like putting in zeroes for the other lattice vectors, go ahead... we can’t stop you.

6.1.3 Crystal Spec (required for use of crystallographic coordinates)

This section has the stuff needed to define the crystal lattice so that crystallographic coordinates
can be used.

The first line following the Crystal Spec keyword should contain the lengths of each of the lattice
vectors. The next line should contain the crystallographic angles «, § and 7.

Variables in the Crystal Spec section can be used as variables in Walsh diagrams in exactly the
same way as variables in the Geometry section, i.e. by using integer multiples of 1000 as values.

For example, the following Geometry, Lattice and Crystal Spec sections define a body centered
lattice of H atoms where the length of the ¢ lattice vector is the first Walsh Variable.

12



eometry Crystallographic

.5 0.5

AW~ O1QR
O OOOo

Crystal Spec

;a b c
1 1 1000

; alpha Dbeta gamma
90 90 90

6.1.4 Electrons (potentially required)

The line following this keyword should have the number of valence electrons in the molecule (or
unit cell for an extended system).

6.1.5 Charge (potentially required)

The line following this keyword should have the charge on the molecule (or unit cell for an extended
system).

Either the Charge or Electrons keywords must appear in the input file.

6.1.6 Alternate Occups

This keyword is for looking at the effects of changing the number of electrons in the unit cell
upon the position of the Fermi level, the average energy, and orbital occupations. This is a far
more efficient way of probing these changes than rerunning the calculation with alternate electron
numbers.

On the line following the keyword, the number of alternate occupations (num_occups ) should
be given. The next line contains the step that is to be taken between occupations.

For example, the following input fragment would result in the program doing a calculation with
5 electrons, then printing out the Fermi level, average energy, net charges, and orbital occupations
for 4.8,4.6,4.4,4.2, and 4.0 electrons per unit cell.

Electrons
5

Alternate Occup
; num_occups

13



5
; the step
-.2

6.1.7 Parameters (optional)

NOTE: If this keyword appears in the file it must follow the Geometry keyword in the input file.

There should be a line following this keyword for each type of custom atom which is being de-
fined. Recall that a custom atom is defined by replacing the first occurance of that atom’s label in
the Geometry specification with an asterix: *. If there are multiple custom atom types, then define
them in this section in the order in which they occurred in the Geometry section.

The format of a parameter specification is:
Symbol Atomic_Number Num_Valence_Electrons ns (s IPs n, (, IP, ng (lg IPg cl (2q c2

and if you're dealing with f-elements (which, like d orbitals, are described by a double zeta expan-
sion) add: n; ¢1y IP; ¢l ¢2; c2 to the end of the parameter specification.

In this specification, the ( values are the radial exponents of the Slater type orbitals and the H;;
values are the valence state ionization potentials (diagonal elements of the hamiltonian) for each
AOQO. Here’s an example of a section of input file where 3 different custom atoms are defined:

Geometry

8

1 % .000000000 .000000000 .000000000
20 1.952000000 1.952000000 .000000000
3 % 1.952000000 .000000000 -.3

4 0 1.952000000 .000000000 1.4862

5 % 0.000000000 1.952000022 1.9422

60 3.904000044 .000000000 .000000000
70 .000000000 3.904000044 .000000000
80 .000000000 0.0 4.152
Parameters

0 86 2 2.275 -32.3 2 2.275 -14.8
Ti 22 4 4 1.075 -8.970 4 1.075 -5.400 3 4.55 -10.81 .4206 1.400 .7839
Pb 82 4 6 2.50 -16.70 6 2.06 -8.000

In this example, atom 1 is an O, atom 3 is a Ti, and atom 5 is a Pb. Atoms 2,4,6,7, and 8 will
use the same parameters as atom 1. Clarification: The parameters specified here for O are the
default parameters.

6.1.8 Molecular (mandatory for molecular calculations)

Indicates that a molecular calculation (not an extended one) is being performed. Otherwise it is
assumed that the calculation is on an extended system.
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6.1.9 Just Geom (optional)

Do not actually do a calculation, just generate the molecular geometry. This is useful to check
whether or not an input file is okay before running a calculation. It will also print the estimated
memory requirements of bind for this run into the status file.

6.1.10 Walsh (optional)

Do a series of calculations along a reaction coordinate.

The next line should contain the number of variables (reaction coordinates): num_Walsh_var ,
and the number of steps to be taken along each coordinate: num_steps . There should then be
num_Walsh_var lines consisting of a list of comma separated num_steps values.

To generate the values of a variable automagically, place an exclamation point (!) at the begin-
ning of the line for that variable followed by the starting and ending values of the variable, separated
by a comma. The program will generate num_steps values between those values.

For example, the following sample section will generate a reaction with coordinate with 5 steps
and 2 variables. The values of the first variable will be automatically generated between 1.0 and
2.0, the values of the second variable are specified explicitly.

Walsh

; the number of variables and number of steps
25

; use Auto-Walsh for the first variable:
11.0,2.0

100.0,100.1,100.2,100.3,100.4

Please note that, while there are two Walsh variables, they are varied simultaneously. There is
not, at this point, a capability to vary the Walsh variables independently in order to automatically
generate a multi-dimensional potential energy surface.

6.1.11 Symmetry (optional)

Find and report all the symmetry elements possessed by the molecule. The characters of all wave
functions with respect to these operations will also be reported.

Note: As is explained in the section of this manual on symmetry elements, bind does not
actually find all symmetry elements. It only finds those which are aligned with the Cartesian axes.
You can increase the number of symmetry elements which the program finds by making sure that
it align with the axes in a reasonable manner.

6.1.12 Symm Tol (optional)

Allows the user to adjust the value of the tolerance used for determining whether or not symmetry
elements are present in the molecule.

The next line should contain the new value of symm_tol .

If the position of an atom after a symmetry operation differs from that of an atom before the
symmetry operation is applied by less than symm_tol A, then the two atoms are considered to be
equivalent under the symmetry operation.

15



6.1.13 Principle Axes (optional)

Determine the center of mass and principle axes of the molecule and transform the atoms into the
principle axis frame. This can allow the program to find more symmetry elements.

Note: Principle axes are only found if the meschach library was linked with bind . If you do
not have meschach, then the program will just translate the molecule into the center of mass frame
before finding symmetry elements.

6.1.14 Zeta (optional)

Toggles self consistent variation of radial exponents. This is under development and if you don’t
know what it means, you probably shouldn’t be using it.

6.1.15 Nonweighted (optional)

Use the non-weighted H;; form [6]. By default the weighted H;; form is used in order to reduce
problems arising from counter-intuitive orbital mixing (gasp!) [7, 8].

6.1.16 The Constant (optional)

Allows replacement of the value K used in evaluating the H;; elements. The next line should
contain the new value for K . By default K =1.75.

6.1.17 Zero Overlap (optional)

Set some elements of the overlap matrix to zero. The next line should contain the number of
different types of overlap being set to zero (num_to_zero ). The next num_to_zero lines should
consist of:

type contribl contrib2 which

type should be either Atom or Orbital to indicate which type of overlap is being zeroed. If
which is set to Intercell, then overlaps between contribl and contrib2 between cells will be zeroed.
If which is set to Intracell then the overlaps inside the cell will be zeroed.

NOTE: This option should be used with caution, as it can result in a non-positive-definite
overlap matrix and non-physical results.

6.1.18 Nearest Neighbor Contact (optional)

Determines the longest contact between atoms in nearest neighbor cells that will be reported in the
output file. The next line should contain the new value. The default is 2.5 A.

NOTE: This keyword only makes sense for extended systems.

6.1.19 K Points (mandatory for Average Properties calculations on extended systems)

A K point set for an average properties calculation. If you want to do a band structure, we
recommend that you use the Band keyword.
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The keyword is followed by a line containing the number of K points: num KPOINTS . The
next num_KPOINTS lines should contain the coordinates and weights of the K points themselves
in the following form:

a b c weight

Each K point should go on its own line.

6.1.20 Band (optional)

Generate a band structure.

The line following the keyword should contain the number of K points to use along each symmetry
line: points_per_line .

The next line should have the number of special points to be used: num_special_points .

The following num_special_points lines should have the names and locations of the special points
in the form:

label x y z

The program will generate symmetry lines connecting the special points in the order in which
they are defined. points_per_line K points will be generated automatically along each of these
symmetry lines. The program will produce an additional output file containing the information
needed by viewkel to plot the band structure. If your input file is called foo.bind, then the band
file will be called foo.bind.band.

For example, the following segment will generate a band diagram with symmetry lines containing
40 K points running from I' to X to M and then back to I:

Band

; the number of points along each line
40

; the number of special points

4

Gamma 0.0 0.0 0.0

X 0.50.0 0.0

M 0.50.50.0

Gamma 0.0 0.0 0.0

6.1.21 FMO (optional)

Perform Fragment Molecular Orbital analysis.

The next line should contain the number of fragments num_FMO_frags . Note that num_FMO_frags
should be > 1. There is no upper limit on the number of fragments.

The next line consists of a comma delimited list of the number of electrons in each fragment.

The following num_FMQO_frags lines consist of comma delimited lists of the numbers of the atoms
in each fragment.

In the specification of atoms for each fragment, you can use a hyphen (dash) to indicate groups
of sequentially numbered atoms. For example, the following segment will generate 2 fragments, the
first fragment containing atoms 1, 2, 3, 4, 5 and 8 and the second fragment containing atoms 6 and 7.

FMO

17



; the number of fragments

2

; the number of electrons in each fragment

12,2

; the lists of atoms contained in each fragment
1-5,8

6-7

If a molecular calculation is being done, the data necessary to construct an FMO interaction
diagram will be written to a separate output file.

6.1.22 FCO (optional)

Perform Fragment Crystal Orbital analysis. The lines following this keyword are identical to those
for the FMO keyword.

6.1.23 Average Properties (optional)

Do an average properties calculation for the system. This consists of:

e Generating a total DOS curve.
e Finding E;, the Fermi energy.

e Determining the average overlap population and reduced overlap population matrices within
the unit cell (if the printing option for these is set).

e Finding average orbital occupations and net charges.
e Reporting the average values of any COOPs specified (see keyword COOP).

e Show average occupations of Fragment MO’s (if FMO analysis is being done).

NOTE: if you are doing an average properties calculation on an extended system, you must provide
a set of K points, see keyword K Points.

Specifying an average properties calculation for a molecular problem will allow the generation of
MOOP (Molecular Orbital Overlap Population) diagrams and the RCM (Reduced Charge Matrix)
as for extended syatems.

6.1.24 No Total DOS (optional)

Turns off printing of the total DOS into the output file. This option can be used to conserve disk
space when the total DOS isn’t going to be looked at.

Note: If this keyword is specified neither total DOS nor projected DOS calculations will be
done.

6.1.25 Dump Overlap (optional)

Toggles creation of a binary file containing the overlap matrix at each K point. This file can be
used with the matrix view utility to generate pictures of overlap matrices.
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6.1.26 Dump Hamil (optional)

Toggles creation of a binary file containing the hamiltonian matrix at each K point. This file can
be used with the matrix view utility to generate pictures of hamiltonian matrices.

6.1.27 Dump Dist (optional)

Toggles creation of a binary file containing the distance matrix for the system. This .DMAT file
can be used by the utiltity cooperate to generate specifications for COOPs automatically.

6.1.28 Projected DOS (optional)

This section contains the list of densities of states (DOS’s) that will be projected. Each DOS can
have multiple contributions which will be added up.

The keyword is followed by a line containing the number of different projections: num_proj_DOS .
The next num_proj_DOS lines should consist of:

type contribl weightl , contrib2 weight2 ...

type should be either Atom, Orbital, or FMO to indicate whether the contribution from an entire
atom, a single orbital, or a fragment MO is being projected out.

There can be as many contributions to each projection as you like, just put it all on one line and
separate the contrib —weight pairs by commas. Entries for a single projection can be spread over
multiple lines by placing a “\” at the end of each line. To average contributions make the sum of
the individual contributions add up to 1.0. To add contributions, make each of the contributions
1.0. In general, it is a good idea to add projected DOS curves rather than average them.

6.1.29 COOP (optional)

Do a Crystal Orbital Overlap (or Hamilton) Population analysis [2, 5, 9, 10]. Note: the COOP
option results in a Molecular Orbital Overlap (or Hamilton) Population analysis when the molecular
keyword is specified.
The line following the keyword has the total number of COOPs specified (not just the number of
different types): tot_num_COOPs .
The next tot_num_COOPs lines should contain the definitions of the COOPs themselves in the
form:

type which contribl contrib2 a b c

type should be either Atom, Orbital or FMO to indicate whether the COOP between atoms, orbitals
or fragment MQO’s is being projected.

Setting type to H-Atom, H-Orbital or H-FMQO will generate the corresponding Hamilton population
between atoms, orbitals or fragment MO’s respectively.

which is the number of the COOP. Multiple COOPs with the same value of which will be averaged.

The COOP reported is between contribl in the unit cell and contrib2 in a cell defined by the
vector (a b ¢ ). For example, the following sample section will average the COOP between atoms
1 and 2 in the unit cell with that between atom 2 in the unit cell and atom 1 in the adjacent cell
in the b direction:
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coop

; the total number of lines here:
2

; definitions of the COOPS

;type which contribl contrib2 abc
Atom 1 1 2 000
Atom 1 2 1 010

Note: If you are doing a COOP calculation on a high-symmetry system where you are using K
points within the irreducible wedge of the first Brillouin zone, it is very important that you average
all symmetry equivalent bonds [11]. If you do not do so, your results may be inaccurate.

6.1.30 Printing (optional)

This keyword controls what information is printed into the output file. In most cases, this also
controls what things the program actually calculates. For example, if the user doesn’t request that
the reduced overlap population matrix be printed, then there’s no reason to calculate it. We have
tried to make the program “smart” about what it calculates, but, there may be problems here.
Please let us know if you see strange behavior.

This keyword is different from all the others in that the program expects it to be followed by
another list of keywords. In fact, any keyword following Printing is assumed to be controlling what
gets printed. The way to tell bind that you are done giving it printing options is to either let it hit
the end of the file (i.e. to have Printing as the last keyword in your input file, or to put the keyword
End_Print at the end of the printing options.

Each of the printing keywords is described below.

e Distance: Print the distance matrix.

e Overlap Population: Print the Mulliken overlap population matrix.

Reduced Overlap Population: Print the Mulliken reduced overlap population matrix.

Charge Matrix: Print the charge matrix.

e Wave Functions: Print the wavefunctions for the molecule.

Net Charges: Print the net charges on the atoms, as determined using Mulliken population
analysis.

e Overlap: Print the overlap matrix.
e Hamil: Print the hamiltonian matrix.

e Electrostatic: Print the electrostatic contribution to the total energy. NOTE: this is under
development and is not to be considered reliable.

e Levels: Toggles the printing of energy levels at each k point in an extended calculation.

e Fermi: Print the Fermi energy (this is primarily useful in combination with the Walsh option,
described below).
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e Orbital Energy: Allows the energy of a particular orbital to be printed. (this is primarily useful
in combination with the Walsh option, described below).

e Orbital Coeff: Allows the coefficient of a particular atomic orbital in a given molecular orbital
to be printed. (this is primarily useful in combination with the Walsh option, described below).

e Orbital Mapping: Generates the scheme used to number the individual atomic orbitals in a
calculation (especially useful when working out the contributions for COOP’s)

e |evels Print out the calculated energy levels at each k point in an extended calculation.

Each of these options control printing at every K point and/or step along a reaction coordinate.
Turning on all the printing options can lead to a huge output file if you have a lot of K points or
steps in a Walsh diagram.

Placing the keyword Transpose after a printing option for a matrix will result in the transpose
of the matrix being printed. This feature has been introduced to appease those who think that the
default way of printing is stupid.

To facilitate the construction of graphs of various quantities (overlap populations, net charges,
etc.) along a reaction coordinate, there is a second option that can be used with printing options. If
you place the keyword Walsh on the same line as a printing option, then you can select a particular
quantity to monitor along the Walsh diagram. These values are put into a separate file. If you
are using an input file named foo.bind then the values of these quantities would be put into
foo.bind.walsh.

To use this feature, place Walsh after your printing keyword, then on the next line put the
following three pieces of information:

type contribl contrib2

Once again, type is one of Atom, Orbital or FMO and contribl and contrib2 refer to particular
atoms, orbitals or fragment MO’s.

NOTE: there are certain combinations of these Walsh printing options which do not make
sense. For example, specifying that you want to monitor the reduced overlap population between
2 orbitals is nonsensical. The program will notice this and complain, so just think a bit before you
start printing everything out.

For example, the following section would print out the entire overlap population matrix and
all the net charges at every step into the main output file, and then print the overlap population
between orbitals 13 and 23 into the Walsh output file:

; start dealing with printing options
Print

Overlap Population
Net charges

; this is a Walsh printing value
Overlap Population Walsh
Orbital 13 23

End_Print
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6.1.31 MO Print (optional)

This keyword controls creation of a .MO file. This can be read in by viewkel to produce iso-surface
plots of molecular and crystal orbitals.

The first line following the keyword contains the number of MO’s to be printed: num_MOs . The
next num_MQOs lines contain the numbers of the individual MO’s that should be printed.

If you are doing an extended calculation, the MO’s will be printed at each k point. If you are
doing a Walsh diagram, the MO’s will be printed at each step along the reaction coordinate.

6.1.32 Orbital Occupations (optional)

This section is used to change the occupations of molecular orbitals. This is primarily useful for
trying to model open shell systems or molecules in excited states.

The first line following the keyword should contain the number of orbital occupations to change,
num_occups . The next num_occups lines consist of an integer specifying the orbital whose occu-
pation should be changed and a real number specifying what the new occupation should be.

For example, the following piece of an input file would place 1 electron in both orbitals 49 and
50:

Orbital Occupations

; the number of occupations to change
2

; the orbitals and new occupations
49 1.0

50 1.0

6.1.33 Charge lteration (optional)

bind has the capability to perform charge iteration (a self consistent adjustment of the H;s in
order to lessen the amount of charge flow). The charge iteration algorithm in bind is somewhat
experimental (... so beware!) and is discussed in the file charge.ps.

For those of you who know no fear here’s a summary of the CI keywords:

The keywords controlling the CI process are sandwiched between the charge iteration and end
charge keywords.

The keywords within the CI block are:

Param followed by a line giving the number of different atoms that parameters will be specified
for: num_CI_parms each of the next num_CI_parms lines should contain the charge iteration
parameters in the form: Atomic_symbol s sgscpapepcdadpdc

(i.e. the A, B, and C parameters for each of the orbitals. These are the same parameters used
in the old programs for single configuration CI and are NOT distributed with YAeHMOP). Note:
charge iteration for f orbitals is not supported.

Vary(follows Param) followed by a single line containing the numbers of the atoms whose param-
eters are to be varied. This is a comma delimited list, you can use “-” to abbreviate series of atoms
(i.e. 1-4 and 1,2,3,4 are equivalent)

Tolerance followed by a single line specifying the tolerance used to terminate the iteration

lambda followed by a single line specifying the step size for the iteration process

max iter followed by a single line specifying the maximum number of iterations
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6.1.34 Sparsify (optional)

This is used to set small elements of the hamiltonian and overlap matrices to zero. The next line
should contain the value which is considered to be zero.
NOTE: This is primarily here for development purposes and we’d encourage you not to use this.

6.1.35 Just Average E (optional)

Tells bind to only generate the average energy, total DOS, and Fermi level of the system. This
causes the program to require considerably less memory when run on systems with a lot of orbitals.

If you are using a version of bind that uses the LAPACK libraries to diagonalize the matrices,
then only eigenvalues will be generated. This can result in a significant speed increase. (A factor
of 10 decrease in execution time for sufficiently large systems is possible !).

6.1.36 Just Matrices (optional)

Generate just the overlap and hamiltonian matrices, then exit. This is basically useless unless it is
used in conjunction with either the Dump Overlap or Dump Hamil keywords, or the Hamiltonian or
Overlap printing options.

6.1.37 Diagwo (optional)

Performs the matrix diagonalization without using the overlap matrix, so that a calculation is
similar to a simple Hiickel calculation.
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Chapter 7

Symmetry analysis

The symmetry analysis performed by bind is relatively extensive and flexible. While the program
doesn’t find all of the symmetry elements possessed by molecules, it does get a lot of them.

In order to make the symmetry analysis as flexible as possible, the molecule can first be moved to
the center of mass frame of reference. The moments of inertia are then found and the whole molecule
is rotated into the principle axis frame. This allows molecules which are not located exactly at the
origin or aligned perfectly with the Cartesian axes to be analyzed.

The transformation to the principle axis frame is controlled by the keyword Principle Axes. If
this keyword is not specified, the symmetry analysis will be done in the orientation specified in the
Geometry section.

The program searches for the following symmetry elements:

e an inversion center
e rotation axes from C, through Cg about the three Cartesian axes.
e improper rotation axes from S3 through Sg about the three Cartesian axes.

e mirror planes perpendicular to the Cartesian axes.

The elements found, their axes, and atoms which are equivalent under each operation are printed
to the output file.

The characters of the wavefunctions with respect to each operation are determined by construct-
ing the appropriate transformation matrix for each operation and transforming the vector of atomic
orbital coefficients for each molecular orbital. The result of this process is the actual character
of the wavefunction with respect to the symmetry operation, not just a symmetric/anti-symmetric
label. It is important to realize that the results of this method of displaying the results of symmetry
analysis can give results which are, at first, confusing for degenerate orbitals. If you are looking at
the characters of a set of degerate orbitals and trying to compare them to the characters given in
a character table, it is very important that you sum the characters of each of the members of the
degenerate set.

When a reaction coordinate is being followed, bind first generates all the geometries along the
coordinate and determines the symmetry elements which they possess. The only symmetry elements
reported are those which are conserved along the entire distortion. This means that you don’t have
to worry about moving from high to low symmetry geometries or vice versa. Note: It is possible
that loss of symmetry elements will lead to problems in constructing a Walsh diagram. In these
cases fit_walsh will warn you. If the diagram as constructed is incorrect, you can either change your
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reaction coordinate to not include geometries with problematic degeneracies or edit the .WALSH file
by hand to fix it. This is explained in more detail below in the section on fitting programs.
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Chapter 8

YAeHMOP on the Macintosh

As of version 1.2 of YAeHMOP | there is a Macintosh port of everything. At the moment, the Mac
version only runs on Power Macs. A port to the 68K based Macs is not suported.

The Mac port was done using the CodeWarrior compiler from Metrowerks. Source code and
project files for the Metrowerks IDE are available upon request. Codewarrior is fantastic ! Metroworks
prices it reasonably, includes a ton of useful examples and libraries, and has an excellent upgrade
policy. In addition, the MW technical support is excellent.

The Fortran bits of the program were converted using f2c on our workstations, and then compiled
on the Mac using a port of the f2¢ libraries. All input and output that would normally go to
the console on a workstation is handled by the SIOUX library included with CodeWarrior. The
basic structure of the graphics stuff used in viewkel was done using the EasyApp application shell
distributed with CW.

8.1 A couple of disclaimers

The Mac version of YAeHMOP is not the most beautiful thing that the world has ever seen. Some of
the operations are handled in an ugly, non-Mac way. This is a direct consequence of the program’s
Unix heritage. Hopefully, in some future version these difficulties will be eliminated.

The Mac version of the programs are not nearly as stable as the UNIX version, principally
because the MacOS isn’t a protected mode operating system.

8.2 Using bind on a Macintosh

When bind starts up it will open a standard file choice dialog, you should choose the input file in that
dialog box. If the program has problems opening the parameter file (usually called eht_parms.dat),
it’ll pop up another dialog box. You should use that dialog box to find and select the parameter
file. You can avoid this by having a copy of the parameter file in the same folder as the input file.
To work around this make an alias for eht_parms.dat, copy it to the input folder, and then rename
it eht_parms.dat.
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8.3 The fitting programs

The fitting programs will open a file choice dialog on start up. You should pick the input file used
to run the calculation.

8.4 General Mac hints

If you get errors about the programs not having enough memory or not being able to allocate
matrices, increase the size of the memory allocation for the troublesome program. If you don’t
know how to do this: select the application you want to change, select “Get Info” from the File
menu (or hit CMD-I), then increase the “Preferred Size” entry.
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Chapter 9

Sample Extended System Input File

This is an input file for doing a band structure and average properties calculation on a square 2
dimensional mesh of hydrogen atoms.

; the title
2-D mesh of hydrogen

; the geometry
Geometry
; number of atoms

- w

WN -
& & m

h osition

[eNoNalLel
—OoOon
oo n

0
0
0
0

OO0
OO Ot

; lattice parameters

Lattice
dimension of lattice

N o

; number of overlaps along each lattice vector
4 4

; the lattice vectors (begin atom -> end atom)
12

13

; number of electrons per unit cell

Electrons

1

; band structure details

Band

; K points per symmetry line

40

; number of special points

4

; special points

Gamma 0.0 0.0 0.0

X 0.50.0 0.0
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M 0.50.50.0
Gamma 0.0 0.0 0.0
; do average properties calculation
Average Properties

; do a COOP

Ccoop

; number of COOP’s

2

; COOP specifications

; type which contribl contrib2 cell
orbital 1 1 1 100
orbital 1 1 1 010

; this averages H-H COOP’s between cells (0,0,0)->(1,0,0) and (0,0,0)->(0,1,0)

; the K points

K points

; number of K points
10

; the K points and respective weights
0.0625 0.0625 0.0000 1
0.1875 0.0625 0.0000 2
0.1875 0.1875 0.0000 1
0.3125 0.0625 0.0000 2
0.3125 0.1875 0.0000 2
0.3125 0.3125 0.0000 1
0.4375 0.0625 0.0000 2
0.4375 0.1875 0.0000 2
0.4375 0.3125 0.0000 2
0.4375 0.4375 0.0000 1
; end of file
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Chapter 10

The Fitting Programs

In order to generate nice looking DOS and COOP curves, it is necessary to either use hundreds of
k points in the calculation or to smooth the data which is generated by bind . For obvious reasons,
it is far more common to adopt the latter approach.

Smoothing of DOS and COOP curves is done by putting a gaussian on each data point, then
summing up the contributions from each of the gaussians between the data points. This process
gives rise to the type of curves we are used to seeing.

The parts of YAeHMOP which perform this smoothing operation are called fit_dos and fit_coop.
These both take the name of the input file which was given to bind as an argument.

Here is a sample session:

% bind H_mesh.bind
% fit_dos H_mesh.bind
Enter E min: -30.0
Enter E max: 30.0
Enter broadening: 10.0
Enter Energy Step: 0.5

The broadening parameter given to the fitting programs is the exponent of the normalized
Gaussian smoothing function. A larger broadening parameter gives rise to sharper lines in the
DOS/COOP curves.

After this smoothing process, which produces either a .DOS or .COQP file, the data is ready for
viewing with viewkel .

In order to view a Walsh diagram, the program fit_walsh must be run. fit_walsh is run the
same way as fit_dos or fit_coop: you give it the name of the input file which was given to bind .
If you lose symmetry elements along the distortion coordinate and degeneracies are broken, it is
possible that fit_walsh will get confused and generate a silly looking Walsh diagram. fit_walsh
will warn you if this happens. If the output looks wrong in viewkel you can either manually edit
the .WALSH file created by fit_walsh or rerun the calculation with more points along the distortion
and use the program dumb_walsh, which ignores symmetry operations. If you take the dumb_walsh
route, we recommend you use at least 30-40 points along the distortion. Hopefully a future version
of the program will have a smarter version of fit_walsh so that these contortions are no longer
necessary.
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Chapter 11

Other Utility Programs

There are a number of other utilities distributed with YAeHMOP . These are described below.

11.1 sub_dos and add_dos

These are used to manipulate .DOS files. sub_dos is used to subtract two DOS curves from each
other. This is the basic operation needed for the Crystal Orbital Displacement (COD) analysis
developed by Eliseo Ruiz and Santiago Alvarez [12]. COD is a very sensitive tool for tracking
complicated interactions in the solid state. Running sub_dos without any arguments will give you
the correct ordering of arguments.

add_dos is like sub_dos except that it adds two DOS curves together.

Note: It is very important that the DOS curves used for sub_dos are fit (using fit_dos) within
the same energy window and with the same broadening and energy step. The programs will warn
you about this.

11.2 cooperate

cooperate reads in the .DMAT file generated when bind is given the keyword Dump Distance Matrix
and generates a COOP specification that can be pasted into an input file for bind . The output
from cooperate needs very little modification before incorporation into an input file. The necessary
modifications are fairly obvious. Once again, running the program without any arguments will give
you a complete list of possible arguments.
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Chapter 12

Contents of Files

The various programs in YAeHMOP produce different output files, the names of the files may be
confusing.

For a run on a file named example, here are the names of the files produced and the contents of
those files:

example.status: status information about the job
example.out: the main output file. Contains energies, occupations, average properties, etc.

example.walsh: the values of variables which were printed out along each step of a reaction
coordinate.

example.band: the information needed by viewkel for constructing a band diagram.

example.D0S: (generated by fit dos) the information needed by viewkel to generate DOS
curves.

example.COOP: (generated by fit_coop) the information needed by viewkel to generate COOP
curves.

example .WALSH: (generated by fit_walsh) the information needed by viewkel to generate
Walsh diagrams.

example.FMO: contains the information needed by viewkel to generate FMO diagrams.
example.MO: contains the information needed by viewkel to generate MO pictures.

example .DMAT: generated when the dump distance matrix keyword is used, contains the infor-
mation needed by cooperate to automatically generate COOP specifications for crystals.
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Chapter 13

Those Damn Bugs!

One thing to be aware of is that YAeHMOP is under development, so there are some features built
into it which may or may not be permanent. We've tried to indicate wherever possible when things
are not finished or are in the testing stages.

13.1 What is a bug?

There are two possible reasons for a calculation to screw up: a bug in the program or a user error.
Please make sure that your input file is correct before you send in a bug report.
Any of the following things could indicate a bug:

1. bind gives you answers that don’t make any sense at all

2. bind does something funny like not printing out something you told it to print out.
3. bind wanders off into space and never comes back (i.e. it runs forever).

4. bind crashes without giving you some idea of what happened.

5. bind seg faults and dies. (You see the message: Segmentation Fault: core dumped)

We have yet to see bind do anything like #3 above. If you do think that the run is taking too
long, check the status file and make sure that it is still doing something.

bind should never do either #4 or #5 above. If either of these happen you have definitely
found a bug. Please report it. The major cause of segmentation faults seems to be problems in
the input files given to bind . Error checking routines are in place to catch many of these problems,
but we probably missed a few. So please let us know if you find input file formats that give rise to
segmentation faults without generating a warning.

viewkel is a slightly different story. The code for viewkel isn’t nearly as clean or carefully written
as that in bind . The result is that viewkel occasionally will dump core and/or die unexpectedly.
We’re aware of some of these problems and are working on them. If you can make viewkel dump
core reproducibly, please let us know. Similarly, if the output from viewkel just looks wrong, tell
us and we’ll see what we can do.
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13.2 What to do if you find a bug

In order for us to be able to fix bugs, we have to be able to reproduce the circumstances that gave
rise to them. In order to do this, we need a copy of the input file that caused the problem. Please
include the following in any bug report that you send:

1. A description of what went wrong, or why you think the answers you got are wrong.

2. Copies of the input file (essential), and the status and output files (optional, but extremely
useful).

3. Information about what kind of computer you are using (machine type and operating system
version if possible).

4. Some way to get in touch with you.

Please send bug reports to the following email address:
yaehmop@xtended.chem.cornell.edu
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Chapter 14

Some (hopefully) helpful hints

14.1 Choosing how many overlaps to use

The overlaps specified determine how many unit cells the program uses when building the overlap
matrix in K space. The important thing when answering this question is to remember that the
goal is to include all unit cells surrounding the ’home’ cell that have a non-zero contribution to the
overlap matrix. The general criterion here is that you should go out far enough that the length of the
lattice vector times the number of overlaps is between 10 and 20 A. Some systems don’t require this
many overlaps, and some require more. It’s safe to go with too many overlaps, though this causes
bind to use more memory and go slower. If you don’t have enough overlaps, the diagonalization
procedure will fail. This will be reported in the status file after the program finishes running.

14.2 Choosing the number of k points to use

This is a tricky question. The right answer is that you should always do a k point convergence test
for every calculation (i.e. you should try using a variety of different sampling densities and stop
when you get convergence). However, this isn’t always practical or possible. The general guideline
we use is that the number of crystal orbitals (number of orbitals in the unit cell times the number
of k points) should be equal to 1000. This criterion is highly questionable when doing slab models
of interfaces or surfaces, so be careful with these systems.

14.3 Choosing the number of points in band structures

Generally using 40 k points per symmetry line works fine. If your bands are flat, you can use less
than this. If you are really worried about seeing weakly avoided crossings and you can’t tell if you
are seeing one, use more points.

14.4 Calculations on big systems

When doing calculations on large systems (where the meaning of large depends on how much
memory your computer has), it’s very good idea to do the average properties and band structure
calculations separately. This is because average properties calculations use a lot more memory, and
band structure calculations use a lot more k points. If you are nearing the limit of the memory

35



available on your machine because of the demands of the average properties calculation, the band
structure calculation will take much much longer than it has too. You are better off if you do the
two runs separately. It’s also a good idea to do the band structure once, then comment out the band
part of the input file. That way if you add projected DOS’s or COOPs later, you won’t accidentally
redo the band structure, which won’t have changed.
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Chapter 15

Using viewkel

viewkel is written to display results on either X Windows displays or Tektronix terminals. The
program will automatically detect whether or not X Windows are available and will use them if
they are. Printing is handled by generating Postscript files which can then be directly printed
or included in documents. The actual graphics calls used to draw the data are all included in a
separate file, so it should be reasonably easy to port the program to other graphics systems.

Since the use of the X and Tek versions of viewkel is different, they will be dealt with separately.

Note: I haven’t put much work into the command line (Tektronix) version of viewkel recently,
so it doesn’t have a lot of the features mentioned below and some of the features it purportedly
does have may not work.

15.1 Using viewkel in X

When you start viewkel under X, it will open 2 windows. The first, and larger, window (the
graphics window) is used to display output. The second window (the main button window) has
buttons which are used to control the program.

The individual button windows and the functions of the buttons found therein are described
below. Each button is only described once, so though many different windows have a X Legend
button, it is only described once.

You can cause the program to redraw at any time (except when an isosurface is being evaluated)
by middle clicking in any of the windows.

15.1.1 Special keys in viewkel

There are a number of keys that can be used in viewkel , some of these duplicate features found in
button windows, some are unique.

e q: will cause viewkel to quit.
e r: switches into rotate mode.
e t: switches into translate mode.
e c: switches into center mode.

e s: switches into scale mode.
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e the spacebar: switches into choose mode.

e h: in choose mode hides the selected atoms

e +: in choose mode shows previously hidden atoms

e z: rotates the selected molecule so that you are looking along the Z axis.
e y: rotates the selected molecule so that you are looking along the Y axis.

rotates the selected molecule so that you are looking along the X axis.

viewkel will prompt you for a file name to use, then write an input file for rayshade.

°
e ral o B

writes the cartesian coordinates of the molecule to standard output.

15.1.2 General use of buttons

In order to avoid having to use a user interface library that may not exist on some machines, I
wrote all the button code myself. This means that the buttons aren’t necessarily the most beautiful
things you’ve ever seen, and sometimes they behave in ways which are just plain wrong (for example,
text can overflow out of the button). The most important thing from my perspective is that these
buttons do work, and the code to deal with them is simple and small.

To activate a button, left click on it. If it is a toggle button, then the toggle will be changed. If
the button is for changing the value of some variable, you will be prompted to enter a new value
for that variable (no, I didn’t write dialog box code).

Buttons which are for toggling the display of lines will show a sample of the line style to the
right of the button. You can change this line style by right clicking in the toggle button.

15.1.3 The main button window

The buttons in the main button window are described below:

e the Mode button: This is the top button in the window. It displays what mode the program
is using to manipulate the graphics displayed in the graphics window. Left clicking in this
window changes the active mode. This mode determines what action the control keys have.
The control keys are i,j,k,1.p,and ;. The first four of these form an inverted arrow on a standard
keyboard.

The possible modes are:

— None: the control keys do nothing.

— Rotate: the control keys rotate the active object. i and k rotate about the y axis, j and 1
rotate about x, and p and ; rotate about z. Holding down shift while hitting any of these
keys results in a larger rotation step. In versions of viewkel greater than or equal to 2.0,
you can also rotate molecules in rotate mode by left clicking and dragging in the graphics
window. This is easier to do than it is to explain, so try it out. Note: Rotations only
apply to displayed molecules and MQO’s, not to graphs because that would be silly.

— Translate: the control keys translate the active object. i and k move along the y axis, j
and 1 move along x, and p and ; move along z. Holding down shift while hitting any of
these keys results in a larger step.
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— Center: the control keys translate the center of the active object. i and k move along the
y axis, j and | move along x, and p and ; move along z. Holding down shift while hitting
any of these keys results in a larger step. This is different from the Translate mode for
molecules and MO surfaces in that the molecule and the point that the camera used to
construct the perspective view looks at are move simultaneously. This allows the molecule
to be moved about the screen without the view changing. In versions of viewkel greater
than or equal to 2.0, you can also change the center of your molecule by left clicking in the
graphics window. When you do this, the center of the molecule will be moved to where
you clicked. If you then drag, the molecule will move. Note: For anything other than
molecules and MO surfaces Translate and Center are equivalent.

— Scale: the control keys change the size of the active object. j shrinks along x, | grows along
x, k shrinks along y, i grows along y, ; shrinks along z, and p grows along z. Once again,
holding down shift while hitting a key increases the size of the step.

— Choose: Left clicking on atoms selects them. Right clicking then either displays the
distance between those atoms (two selected), the angle between them (three selected), or
the relevant dihedral angle (four selected). A label is placed at the location of the right
click and lines are drawn to the controlling atoms. If you right click with just a single
atom selected, the coordinates and identity of that atom will be printed in the window from
which you ran viewkel . This is a convenient way to find the coordinates of a particular
atom if you forget (or if you have centered the molecule using the “center” button in the
molecule option window). The labels displayed in Choose mode remain on screen until the
Clear Labels button is hit.

e Read Molecule: Reads in the atomic positions of a molecule. You will be prompted for the
name of the output file containing the geometry. Enter the name of the file in the window
from which you started up viewkel . The molecule will be read in and displayed and a molecule
button window will be opened.

e Read MO: Reads in the specification of an MO. You will be prompted for the name of the
input file used to perform the calculation. Enter the name of the file in the window from
which you started up viewkel . The program will read in the geometry of the molecule itself
from the .out file and the MO specification from the .MO file. You will be prompted for which
MO you which to use if there are multiple MO’s in the .MO file. Note: To use this option you
must have specified MO printing when bind was run.

e Read Contours: Reads in a contour plot. You will be prompted for the name of the file
containing the contour data. This option is primarily intended for dealing with FCO plots.

¢ Read FMO: Reads in FMO data and constructs an interaction diagram. You will be prompted
for the name of a .FMO file. viewkel will read in the FMO data, construct an interaction
diagram, and open an FMO options window.

e Read Props: Reads in average properties (DOS, COOP or COD) data and displays it. You
will be prompted for the name of a data file (either .DOS, .COOP, or .SUB). The program will
read in the data and open a property options window.

¢ Read Walsh: Reads in data for a Walsh diagram. You will be prompted for the name of a
.WALSH file. viewkel will read in the data and open a walsh option window.
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¢ Read Bands: Reads in the data to display a band structure. You will be prompted for
the name of a .bands file. viewkel will display and band structure and open a bands option
window.

e Read Graph: Reads in raw data for a graph. You will be prompted for the name of the file
containing the graph data. This allows construction of very primitive graphs. This option just
exists because it was easy to do. viewkel is not intended to be a general purpose graphing
program.

e Fill Proj.s: Toggles filling of projected DOS curves. On screen these will be shown shaded, in
the printed output they will be lined. Note: in the Macintosh version of viewkel , this keyword
has no effect on the way things are displayed on screen, it does still affect the Postscript output.

e Purge!: Deletes all currently displayed objects and closes all of their button windows.

e Printing Options: Opens a window which allows you to change some of the default behavior
for the Postscript printing.

e Print: Prompts for the name of a file, then redraws the screen, writing its contents to the file
as Postscript. This file can then be printed however you normally print .ps files.

e Clear Labels: Removes labels from the display. They will not be refreshed, so once you clear
them, they are gone.
15.1.4 The PS options button window

This window allows you to control some of the default behavior of the Postscript printing from
viewkel .

e Location: This button controls where the graph is located on the output page. There are
three possible values: Top, Middle and Bottom. The default is Bottom.

e Font: Allows specification of the standard text font. The default is Times—Roman. Note: This
option can be overridden using the enhanced Postscript commands (described in an Appendix).

e Font Size: Allows specification of the standard text font size (in points). The default is 12.

e Scale: Allows scaling of the whole output. This does not affect the size of the text font, to
change that use the Font Size button.

Note: None of the changes made in this window will be visible on screen.

15.1.5 The molecule button window

This is the window which is popped up when a molecule is opened. It is used to control the viewing
options for the molecule being displayed.

e Hydrogens?: Toggles drawing of hydrogens.

e Dummies?: Toggles drawing of dummy atoms.
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e Center: When this is pressed, the molecule is moved so that it is centered at the center of
mass (Note: since viewkel doesn’t actually know what the masses of your atoms are, the
center of mass is actually calculated assuming all the atoms have the same mass. The resulting
positioning is usually still right.).

e Hide Atoms Allows you to make it so that some atoms in the molecule aren’t displayed. You
will be prompted for a list of atoms to hide. Enter a comma delimited list. You can use the
dash (hyphen) just as it was used in the FMO specification. For example, the following list
will hide atoms 1-23 and 99: 1-23, 99

e Show Atoms Allows you to “unhide” atoms you may have hidden before.

o Axes?: Toggles display of a set of axes on screen.

e Outlines?: Toggles the drawing of dark circles around the atoms being displayed.
e Shading?: Toggles shading of the atoms being displayed.

e Crosses?: Toggles display of pseudo-3D crosses on the atoms. If this is turned on and shading
is turned off, the interiors of the atoms are drawn as solid white with the cross superimposed.

e Connectors?: Toggles drawing of lines connecting atoms which are a distance within bond_tol
(see below) of the sum of their covalent radii apart.

e Fancy Lines?: When this is on lines between atoms are drawn as if they are intersecting
the sphere of the atoms. When off, the lines are drawn all the way to the center of the
atoms. Turning “Fancy Lines” off is useful when drawing a structure without the atoms being
displayed.

e Breaking Lines?: When this is turned on, lines “cut” those behind them that they intersect.

e Tube Lines?: Toggles display of bonds as tubes instead of lines. Tubes are drawn as a white
center with a black edges and cut lines behind them just like breaking lines. Note: if both
“Tube Bonds” and “Breaking Lines” are turned on, only the Breaking Lines will be drawn.

e Numbers?: Toggles display of the numbers of atoms.
e Symbols?: Toggles display of atomic symbols.
e Line Width: Used to control the thickness of the lines drawn between atoms.

e Bond Tol: Used to enter a new value of bond_tol . When this is changed the lines between
atoms are recalculated.

e Rad Scale: Used to control the scaling of the circles drawn for atoms.

e Grow Xtal!: This button only appears for molecules that have lattice parameters in the
output file (i.e. extended systems). Clicking this allows you to show more than one unit cell.
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15.1.6 The MO button window

Note: This section is substantially changed since viewkel version 1.2.

When an MO isosurface is opened, two button windows are opened. One of these windows is
a Molecule window as described above. The other window is used to control the drawing of MO
isosurfaces on screen. These options are described below.

There are two ways to draw isosurfaces in viewkel version 2. The first method draws the isosurface
just as it was done in version 1.2: a solid isosurface made up of filled triangles is drawn. These
isosurfaces do not look particularly good when drawn in viewkel, but generate very nice illustrations
when rayshade is used to raytrace the object. The second method draws Jorgenson and Salem style
contour plots of the surface, with hidden line removal. These plots are similar to those generated
by CACAOQO and PSI88. I will refer to these as “solid” surfaces and “contour” surfaces respectively.
Finally, this button window is also used to generate a two dimensional contour plot of an MO, I'll
refer to these as “contour plots”.

While some buttons apply to both types of figures, the majority control only solid or contour
surfaces.

To explain what the solid surface buttons do, it is necessary to understand how the calculation
of solid isosurfaces is done. The algorithm used to generate the polygonal isosurface is taken from
a section by Jules Bloomenthal (at Xerox PARC) in the book Graphics Gems IV. The algorithm
as published is suitable for polygonalization of continuous surfaces. Unfortunately, isosurfaces of
molecular and crystal orbitals are rarely continuous. They are, instead, made up of a number of
discrete parts (usually lobes centered on particular atoms). In order to work around this problem,
Bloomethal’s algorithm has been modified to look for individual pieces of the surface around each
atom in the molecule. The algorithm starts at the corners of a cube of side length search_radius
centered on each atom. The default value of search_radius seems to work most of the time, if
you see that lobes are obviously missing, try changing the value of search_radius . The algorithm
evaluates the MO values on a grid of spacing voxel_size . Increasing voxel size results in quicker
evaluation and drawing of the surface (less triangles are found, so the surface can be drawn more
rapidly), but the resolution suffers. Decreasing voxel size gives a smoother surface, but it takes
much longer to calculate and to draw. My best advice here is to start with the default value (0.2A)
and then play around with it to see what size suits your purpose.

Some Cautions about solid isosurfaces:

e I haven’t had a chance to do shading (simulated lights) of the isosurfaces. I think that this
will improve the appearance of the final images.

e A heuristic needs to be developed to warn the user when lobes of the MO might have been
missed. I have some ideas here, but I'm still working on them.

When the surface is first read in, the user is prompted for values used in constructing the radial
lookup table. This is a table of values for the radial part of the wavefunctions. Use of this lookup
table results in a tremendous gain in speed. The default values should be fine for almost any
calculations.

One important note about both solid and contour isosurfaces: viewkel does not deal with the
imaginary part of wavefunctions yet. I will put this in later, until then, limit yourself to pure
real wavefunctions. You’ll always be okay with molecular wavefunctions, but general k points for
extended systems will be problematic.

Well, with my salvo of disclaimers fired, here are the explanations of the buttons in the MO
options window.
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e Surface?: Toggles display of the solid isosurface once it has been calculated.
e Molecule?: Toggles display of the molecule.

e Isosurface: This is the isosurface value that is displayed on screen. This is applies to both
solid and contour isosurfaces.

e Voxel Size: The spacing of the grid used to calculate the solid surface.

e Search Rad: The size of the cube around each atom used to provide starting points for the
solid surface search.

e Slop: Used to determine how far past the end of the molecule’s bounding box the solid
isosurface grid extends.

e Exclude Atoms: Used to remove atoms from the calculation of the isosurface. For example,
if you are doing a 7 layer metal slab and are only interested in the surface states (a topic near
and dear to my heart), you can exclude the atoms which are in the middle of the slab. This
will result in a cleaner looking, more quickly evaluated isosurface. You will be prompted to
enter a list of atoms, the syntax here is the same as for the Hide Atoms button described in
the Molecule options section.

e Include Atoms: This is used if you make a mistake when you exclude atoms. It turns the
atoms you switched off back on.

e Surf Evolve: Starts the calculation of a solid isosurface.

e Change MO: Allows you to change which MO you are looking at without having to reload
the whole molecule.

e Tri_Shading?: Toggles filling of the triangles which make up the displayed solid isosurface.

e Tri_ Outlines?: Toggles the drawing of outlines around the triangles which make up the solid
isosurface.

e Contours?: Toggles display of the calculated contours that make up either a contour plot of
an MO or a contour isosurface.

e Contour Mode: This mode button determines the method which is used to generate contour
levels in contour plots. There are three possibilities: Auto num_contours contour levels are
automatically selected between the maximum and minimum values in the data set; Incremental,
you will be prompted for a starting value and a step between contours when the contour plot
is evaluated; Discrete, you will be prompted to enter the num_contours contour values when
you evaluate the contour plot.

e Contour it: Evaluates a contour plot. You will be prompted for:

— the orientation of the plane used to evaluate the contours (i.e. perpendicular to X, Y or
Z)

— the height and width of the plane in which the MO will be evaluated.

— the number of steps to take along each side of the evaluation plane.

— the number of contours you want to use
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— an offset, this shifts the evaluation plane off the origin, useful if you want to contour an
MO where most of the density isn’t at X,Y, or Z = 0.

— Whether or not you want to do a “stack” of contour plots. If you say yes here, you will be
prompted for the number of planes you want in the stack, the location of the start of the
stack, and the distance between planes in the stack. What this does is generate a series
of plots which are parallel to each other and located at different heights. This is a quick
and dirty way to get a feeling for the shape of an MO. Note: if the contour mode is Auto,
viewkel will generate the contour levels automatically in the first plane of the stack, but
then will use those contour values in all other planes.

viewkel will then go off and evaluate the values of the MO in the plane, contour that data, show
you the values of the contours it found, and finally display those contours (if the Contours?
toggle described above is switched on). MO contour plots are real three dimensional objects
just like the molecule they are associated with, and will rotate, translate, and scale in three
dimensions along with the molecule. This feature seems gratuitous, but it’s kind of fun to play
with and it was a lot easier to implement than having the contour be a fixed 2D object. It can
even be useful: if you rotate the molecule so that you are looking at the edge of the contour
plot, you can see exactly where it cuts through your molecule.

e Contour Surf: Evaluates an MO contour plot.

e Invert Phase: This toggle allows you to invert the phase of the MO displayed on screen.
This can be helpful when you want to visually compare two similar MO’s that have opposite
phases: just invert the phase of one of them.

e Hidden: Toggles the use of the hidden line removal algorithm for contour plots and MO
surfaces. When Hidden is on, you should no longer be able to “see through” the MO isosurface.
However, this can make it take a lot longer to draw plots, so you may want to have Hidden
turned off when you are rotating your molecule. The hidden line removal does not work
particularly well for normal contour plots, but viewkel will still allow you to use it if you wish.
Note: there are still some boundary conditions that get screwed up sometimes in the hidden
line removal. If a plot looks bad: rotate the molecule a small amount, that should clear things
up. Very, Very Important Note: The hidden line removal algorithm is not guaranteed to
work at all if you have some contours displayed which are not closed (this can arise if the plane
in which you evaluated the MO was too small). Sometimes it works, sometimes it does stuff
that is very, very wrong.

e Grow Xtal: This grows the crystal and propagates the MO coefficients with the correct phase
factors for the given k point. If you want to display the MO of an extended system in more
than one unit cell, you must use this button to grow the crystal. Using the Grow Xtal button
in the Molecule button window will not correctly propagate the MO coefficients.

Note: If are looking at an extended system, and you want to see the crystal orbital in more
than the home unit cell, you must evaluate the isosurface after growing the crystal.

15.1.7 FMO button window

This window contains buttons for controlling the display of an FMO interaction diagram.
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e Electrons: Controls the drawing mode for the electrons in the interaction diagram. Each
mode is described below:

— None: Do not draw electrons.

— HOMO: Draw electrons only in the highest occupied level of each fragment and the
molecule.

— All: Draw electrons in all occupied levels on screen.

e Levels: Toggles display of the levels in the FMO diagram.

e Left Fragment: Controls which fragment is displayed on the left side of the interaction
diagram. Set this to zero or -1 to not show a fragment on the left side.

e Right Fragment: Controls which fragment is displayed on the right side of the interaction
diagram. Set this to zero or -1 to not show a fragment on the right side.

e Y min: This is the minimum energy displayed.

e Y max: This is the maximum energy displayed.

e Level Width: The width (horizontal length) of the levels drawn.

e Thickness: The thickness of the lines used to draw the levels.

e Electron len: The length of the lines used to represent electrons.

e Y tics: Toggles the display of tic marks on the y axis.

e Frame: Toggles the display of a frame around the interaction diagram.

e Show Title: Toggles display of the title of the graph (if one has been entered).

e Title: Allows you to enter a new title to be displayed across the top of the graph.

e Main Label: Allows you to enter a new label for the central set of levels (those of the full
molecule).

e Frag n Label: There will be one of these buttons for each fragment used in the calculation.
These are used to enter labels to be displayed under each fragment displayed.
15.1.8 Walsh button window

This window is used to control the display of Walsh diagrams. The coordinate used to label the x
axis is specified when fit_walsh is run.

e MO’s: Toggles display of the MO levels.
e Total E: Toggles display of the total energy.
e X tics: Toggles display of X tics.

e MO tics: Toggles display of Y axis tic marks (for the energies of the MO’s displayed) on the
left side of the diagram.
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e Tot E tics: Toggles display of Y axis tic marks (for the total energy curve) on the right side
of the diagram.

e X Legend: Allows you to enter a legend to be displayed under the X axis.
e Y Legend: Allows you to enter a legend to be displayed beside the Y axis.

15.1.9 Band button window

Controls the display of band structure data on screen.

e Bands: toggles display of the bands.
e Show Fermi: toggles display of the Fermi energy on the band graph.

e Fermi E: allows you to enter a value for the Fermi energy. The location of the Fermi energy
is not stored in the band file, so you must enter this yourself to get an accurate value.

15.1.10 Properties button window
This is used to control display of average properties data (DOS, COOP, or COD data).

e Curve n: where n is an integer. This is a toggle to control display of each curve in the file.
The numbering of the curves varies from type to type:

— DOS data: Curve 1 is the total DOS. Projections are labeled starting from Curve 2. The
projections are in the order in which they were specified in the input file.

— COOQOP data: The curves are numbered in the same way as the COOPs were numbered in
the input file.

— COD data: There is only one curve per COD file, this is curve 1.

e Integration n: where n is an integer. These toggle display of the integration of the corre-
sponding curve.

e Integ Scale: toggles use of the integration data to label the X axis. This is particularly useful
for integrated DOS data. There are problems with using this option for COOP and COD data.
These will be fixed in the next version of the program.

e Fermi E: allows you to change the value of the Fermi energy. For DOS and COOP data the
value of the Fermi energy is stored in the output file, so viewkel will know the proper value.

15.1.11 Graph button window

This controls displays of graph data. There are no new buttons for control of graph data.
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15.2 Using viewkel from a Tek terminal

When you are sitting at a Tek terminal (Tek 4014 compatible), viewkel will use a command line
driven interface and will use the graphics capabilities of the terminal to display graphs.

You can get help in the Tek version of the program by typing “help” or “?” at the prompt. This
will list all the commands along with a brief description. Since this is available, I will not describe

all the features here.
Though it can be convenient, the Tek interface does have some limitations:

e You can not look at either molecules or MO’s.
e Not all features of each type of graph are modifiable.

e Once a new graph has been opened, previously opened (and displayed) graphs cannot be
modified.

e Due to limitations of the technology, the graph you see onscreen is not nearly as similar to
what comes out of the printer as in the X windows version of viewkel .

Note: It has been a long time since I have worked on the Tektronix version of viewkel , so it’s
not guaranteed to work at all.
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Chapter 16

Using the enhanced Postscript features
in viewkel

It is now possible to include superscripts, subscripts, different fonts, and all kinds of other wacky
stuff in output from viewkel . This is accomplished using an adaptation of the enhpost terminal
type from gnuplot. If you are familiar with this, then you don’t have to read this section, everything
is exactly the same here ezxcept that you can’t do rotated text.

To get a superscript, use the ~ symbol. ~ only holds for one character unless a group of characters
is enclosed in squiggly brackets ({ and }), so the line:

X~10
comes out looking like:
X1o,
while the line
x~{10%}
gives:
X10,

To get a subscript, use the _ symbol. _ behaves in the same manner as ~ .
To change font, put a backslashed version of the name of the font inside squiggly brackets with
the text to be changed. For example

look at {/Symbol G} now
gives:
look at I' now.

There are some other features of the enhpost drivers, but these are the most important.
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Chapter 17

A word (or two) from Greg ... some
acknowledgements

The members of the Hoffmann group were invaluable in the development and testing of these pro-
grams. They provided moral support, bug reports, featur suggestions, and esthetic criticisms that
were invaluable. The group members most involved were: Hugh Genin, Norman Goldberg, Kim-
berly Lawler, Qiang Liu, Erika Merschrod, Udo Radius, Grigoriy Vajenine (who pointed out that I
should be evaluating the radial parts of wavefunctions in atomic units), and Kazunari Yoshizawa.
In addition, the students and auditors of Chemistry 798 in the fall of 1994 and the spring of 1995.
acted as unwitting beta-testers and uncovered a few problems I never would have found. Roald
Hoffmann (my advisor) was very supportive of my efforts and never chastised me for how much
time I was devoting to this project. Of course, he did accuse the program of being vaporware, but
this should nip that criticism in the bud. Thanks Roald!

Edgar Miiller has provided a number of helpful suggestions as well as some Fortran code which
served as the template for the code to deal with crystallographic coordinates. Edgar also came up
with a consistent parameter set for the entire periodic table. This parameter set is distributed with
this release of the program as muller_parms.dat.

Paul Kogerler has also provided suggestions for features which are now integrated and has even
agreed to add some features himself. Expect to see these in a future release.

The function used to diagonalize the inertia tensor as part of the symmetry analysis is taken from
the meschach library. This is a freely available package of functions written in C for working with
matrices. meschach was written by David Stewart and Zbigniew Leyk at the Australian National
University. If you want to use this function in your own code, please obtain a copy of the entire
library. I want to go ahead and take the chance to thank David Stewart for making this library
freely available. At this point I can’t help but interject a piece of propaganda: free software is top
quality stuff, find out about it and use it!

The basis of the code to calculate solid isosurfaces was taken from the article “An Implicit
Surface Polygonalizer” by Jules Bloomenthal in Graphics Gems IV, Academic Press, 1994. If you
do graphics, taking a look at these books is a really good idea.

The algorithm used to do hidden line removal in the Jorgenson and Salem style MO plots is a
slight modification of that used in Jorgenson’s PSI88 program. Because PSI88 is written in Fortran,
none of the code from the program was used, I just used PSI88 to figure out the algorithm.

The enhanced postscript code is adapted from the file enhpost.trm for gnuplot version 3.5. The
original code was written by David Denholm and Matt Heffron, both of whom have given me
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permission to distribute this adaptation.

The code used to contour data (both for FCO and MO plots) is adapted from that used in gnuplot
version 3.5 (I love borrowing code from gnuplot!). The original code was written by Gershom Elber
and this modification is distributed with his permission.
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Chapter 18

Using the LAPACK diagonalizer

bind can now use a function from the LAPACK library (zhegv) to diagonalize the hamiltonian.
This diagonalizer is significantly faster than the default routine cboris. In addition, zhegv can be
used to generate just the eigenvalues of a matrix. This speeds up band structure calculations and
properties calculations with the Just Average E keyword enormously.

If you have a binary distribution of the program, it will use zhegv to diagonalize (this is, un-
fortunately not true of the Mac version of the program, which still uses cboris). If you have a
source distribution, you can turn on the LAPACK diagonalizer by including ~-DUSE_LAPACK in the
CFLAGS line of the makefile. Most of the functions necessary to use LAPACK with YAeHMOP are
distributed in the file zhegv.f. This is the good news. The bad news is that zhegv.f will not
work unless you have an implementation of the Basic Linear Algebra Subroutines (BLAS) library
installed on your machine (this is why the Mac version doesn’t currently support LAPACK). Most
modern distributions of UNIX include a specially tuned version of the BLAS library (it’s usually
/usr/lib/libblas.a), so you should be able to use LAPACK. In addition, many UNIX imple-
mentations will include (as an optional product) a tuned version of LAPACK. The name of this
library is very system dependant, so you’ll have to determine if it exists (if you have an SGI, it’s
/usr/lib/libcomplib.sgimath.so). If you do have a vendor-supplied version of LAPACK, it’s
advisable to use it instead of the zhegv.f distributed with YAeHMOP , the vendor product tends
to be faster.

If you are willing to compile BLAS for your system, or if you want the full LAPACK distribution,
you can get them from the netlib server (http://netlib.att.com). Netlib is a great source for
numerical routines.
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Chapter 19

Distributing and Modifying YAeHMOP

You can distribute YAeHMOP to anybody you like. It’s intended to be given away. However, you
cannot charge others for the distribution. We are firm believers in free software, and would like
YAeHMOP to remain freeware.

The programs which make up YAeHMOP are available in source form. If there is a feature
lacking which you feel really should be there, feel free to add it. If you think that others might
like to use this feature, let us know and we’ll see about integrating it into the main distribution.
This is much easier if you clearly indicate in the source code where you have made changes and, if
possible, send a context sensitive diff of the modified source files. If you find and fix bugs, please
do the same thing.

52



Chapter 20

Updates

YAeHMOP is still under development. The next version will contain bug fixes and other great
stuff. If you send us email (yaechmop@xtended.chem.cornell.edu) and let us know that you have
the program, we can send you mail and let you know when the next version is done. If you don’t
let us know that you have the program, you’ll just have to keep checking our anonymous ftp site
(ftp://overlap.chem.cornell.edu/dist/yaehmop) or the YAeHMOP home page on the World Wide Web
(http://overlap.chem.cornell.edu:8080/yaehmop.html).
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Chapter 21

Citing YAeHMOP

If you publish calculations and/or figures that you produce using either bind or viewkel , we’d ap-
preciate it if you'd cite the program in your references section. At this point, there are no print
publications describing YAeHMOP | so there’s no obvious citation to give.

Please use the following citation for bind :
G.A.Landrum and W.V.Glassey, bind (ver 3.0). bind is distributed as part of the YAeHMOP extended
Hiickel molecular orbital package and is freely available on the WWW at;

http://sourceforge.net/projects/yaehmop/

and the following citation for viewkel :
G.A.Landrum, viewkel (ver 3.0). viewkel is distributed as part of the YAeHMOP extended Hiickel
molecular orbital package and is freely available on the WWW at;

http://sourceforge.net/projects/yaehmop/
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Chapter 22

Specifying your geometry with a
Z-Matrix

A 7Z-Matrix is a convenient way to specify the geometry of a molecule or crystal in terms of bond
lengths, bond angles, and dihedral angles. There are several styles of Z-matrix used in various
programs, bind uses a format similar to that used in Gaussian. This is intended to be a brief
introduction to how a Z-matrix works.

If you already know how to use a Z-matrix, here’s all you need to know about the implementation
in bind :

e The first atom is put at the origin.

e The second atom is put along the Z axis.

e The third atom is in the XZ plane.

e Dihedrals are evaluated using the right hand rule.

The easiest way to explain a Z-matrix is to show one and then explain it, so that’s what we’ll
do. Before we start, however, we need to briefly define a dihedral angle. A dihedral is specified
by 4 atoms, we’ll call them A, B, C, and D. The dihedral A-B-C-D is the angle between the
plane defined by A-B—C and the plane defined by B-C-D. Here’s an alternative explanation: the
dihedral A-B-C-D is the angle between the lines C-D and B-A if you are looking down the line
C-B. There’s one more piece of information we need to fully understand the dihedral: there is a
handedness associate with them. If you think about it, looking down the line C-B there are two
different angles between lines C-D and B—A: § and 360-6. The dihedrals in bind are defined using
the right hand rule: Take your right hand and point the thumb down the line C-B, now align your
fingers with the line C-D, curling your fingers shows the direction in which the dihedral angle is
measured. This is all about a million times easier to understand using a picture, here’s a picture
demonstrating both views of dihedrals and their handedness.
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With that definition under our belt, here’s the Geometry specification for a square pyramidal
(CH3)Bil, fragment, where the CH3 group is along the Z axis and the Bi and four I’s lie in the XY
plane:

Geometry Z Matrix

9

1 Bi

2C12.1

3I112.7 2 90.0
4T12.7 2 9.0 3 90.0
5I12.7 2 90.0 3 180.0
6 I12.7 2 90.0 3 270.0
7TH21.1 1109.5 3 0.0
8H21.1 1109.5 3 120.0
9H21.1 1109.5 3 240.0

Let’s look at the first few entries in more detail.
1. The first atom is a Bi and it’s placed at the origin. Cartesian: (0 0 0).
2. Atom two is a C. It’s placed on the Z axis, 2.1 A away from atom 1. Cartesian: (0 0 2.1).

3. Atom three is an I. It’s placed 2.7 A away from atom 1 and the angle between atoms 3-1-2 in
the XZ plane is 90.0 degrees. Cartesian: (2.7 0 0).

4. Atom four is an I. It’s placed 2.7 A away from atom 1, the angle 4-1-2 is 90 degrees. This
angle puts us in the XY plane. At this point we know that atom 4 lies on a circle in the XY
plane with radius 2.7 A. The dihedral 4-1-2-3 (90 degrees) tells us where on the circle we are.
This dihedral is particularly easy to see: if we look down the bond 2-1 (which is looking down
the Z axis), the angle between the bond 3-1 and the bond 4-1 is 90 degrees. So atom 4 lies on
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the Y axis. Taking the right-handedness of dihedrals into account, we know that atom 4 lies
on the negative Y axis. Cartesian (0 -2.7 0).

5. Atom five is an I It’s 2.7 A away from atom 1, making an angle of 90 degrees with 2 and a
dihedral of 180 with 3. This puts us on the negative X axis. Cartesian (-2.7 0 0).

If you find the handedness of dihedrals confusing, just play around with a couple of molecules
defined using Z matrices, you’ll get the hang of it fairly quickly.
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