/******************************************************************************** * * * D o u b l e - P r e c i s i o n Q u a t e r n i o n * * * ********************************************************************************* * Copyright (C) 1994,2024 by Jeroen van der Zijp. All Rights Reserved. * ********************************************************************************* * This library is free software; you can redistribute it and/or modify * * it under the terms of the GNU Lesser General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public License * * along with this program. If not, see * ********************************************************************************/ #ifndef FXQUATD_H #define FXQUATD_H namespace FX { // Forward reference class FXMat3d; /// Double-precision quaternion class FXAPI FXQuatd { public: double x; double y; double z; double w; public: /** * Default constructor; value is not initialized. */ FXQuatd(){} /** * Copy constructor. */ FXQuatd(const FXQuatd& q):x(q.x),y(q.y),z(q.z),w(q.w){} /** * Construct from array of four doubles. */ FXQuatd(const FXdouble v[]):x(v[0]),y(v[1]),z(v[2]),w(v[3]){} /** * Construct from four components. */ FXQuatd(FXdouble xx,FXdouble yy,FXdouble zz,FXdouble ww):x(xx),y(yy),z(zz),w(ww){} /** * Construct from rotation axis and angle in radians. */ FXQuatd(const FXVec3d& axis,FXdouble phi); /** * Construct quaternion from arc between two unit vectors fm and to. */ FXQuatd(const FXVec3d& fr,const FXVec3d& to); /** * Construct from euler angles yaw (z), pitch (y), and roll (x). */ FXQuatd(FXdouble roll,FXdouble pitch,FXdouble yaw); /** * Construct quaternion from three orthogonal unit vectors. */ FXQuatd(const FXVec3d& ex,const FXVec3d& ey,const FXVec3d& ez); /** * Construct quaternion from rotation vector rot, representing a rotation * by |rot| radians about a unit vector rot/|rot|. */ FXQuatd(const FXVec3d& rot); /** * Return a non-const reference to the ith element. */ FXdouble& operator[](FXint i){return (&x)[i];} /** * Return a const reference to the ith element. */ const FXdouble& operator[](FXint i) const {return (&x)[i];} /** * Assignment from other quaternion. */ FXQuatd& operator=(const FXQuatd& v){x=v.x;y=v.y;z=v.z;w=v.w;return *this;} /** * Assignment from array of four doubles. */ FXQuatd& operator=(const FXdouble v[]){x=v[0];y=v[1];z=v[2];w=v[3];return *this;} /** * Set value from another quaternion. */ FXQuatd& set(const FXQuatd& v){x=v.x;y=v.y;z=v.z;w=v.w;return *this;} /** * Set value from array of four doubles. */ FXQuatd& set(const FXdouble v[]){x=v[0];y=v[1];z=v[2];w=v[3];return *this;} /** * Set value from four components. */ FXQuatd& set(FXdouble xx,FXdouble yy,FXdouble zz,FXdouble ww){x=xx;y=yy;z=zz;w=ww;return *this;} /// Assigning operators FXQuatd& operator*=(FXdouble n){ return set(x*n,y*n,z*n,w*n); } FXQuatd& operator/=(FXdouble n){ return set(x/n,y/n,z/n,w/n); } FXQuatd& operator+=(const FXQuatd& v){ return set(x+v.x,y+v.y,z+v.z,w+v.w); } FXQuatd& operator-=(const FXQuatd& v){ return set(x-v.x,y-v.y,z-v.z,w-v.w); } FXQuatd& operator*=(const FXQuatd& b){ return set(w*b.x+x*b.w+y*b.z-z*b.y, w*b.y+y*b.w+z*b.x-x*b.z, w*b.z+z*b.w+x*b.y-y*b.x, w*b.w-x*b.x-y*b.y-z*b.z); } FXQuatd& operator/=(const FXQuatd& b){ return *this*=b.invert(); } /// Conversion operator FXdouble*(){return &x;} operator const FXdouble*() const {return &x;} /// Conversion to 3-vector, axis of rotation operator FXVec3d&(){return *reinterpret_cast(this);} operator const FXVec3d&() const {return *reinterpret_cast(this);} /// Test if zero FXbool operator!() const {return x==0.0 && y==0.0 && z==0.0 && w==0.0; } /// Unary FXQuatd operator+() const { return *this; } FXQuatd operator-() const { return FXQuatd(-x,-y,-z,-w); } /// Length and square of length FXdouble length2() const { return w*w+z*z+y*y+x*x; } FXdouble length() const { return Math::sqrt(length2()); } /// Adjust quaternion length FXQuatd& adjust(); /** * Set quaternion from axis and angle. * Quaternion represents a rotation of phi radians about unit vector axis. */ void setAxisAngle(const FXVec3d& axis,FXdouble phi); /** * Obtain axis and angle from quaternion. * Return unit vector and angle of rotation phi, in radians. * If identity quaternion (0,0,0,1), return axis as (1,0.0). */ void getAxisAngle(FXVec3d& axis,FXdouble& phi) const; /** * Set quaternion from rotation vector rot, representing a rotation by |rot| radians * about a unit vector rot/|rot|. Set to the identity quaternion (0,0,0,1) if the rotation * vector is equal to (0,0,0). */ void setRotation(const FXVec3d& rot); /** * Get rotation vector from quaternion, representing a rotation of |rot| radians * about an axis rot/|rot|. If quaternion is identity quaternion (0,0,0,1), return (0,0,0). */ FXVec3d getRotation() const; /** * Set unit quaternion to modified rodrigues parameters. * Modified Rodriques parameters are defined as MRP = tan(theta/4)*E, * where theta is rotation angle (radians), and E is unit axis of rotation. */ void setMRP(const FXVec3d& m); /** * Return modified rodrigues parameters from unit quaternion. */ FXVec3d getMRP() const; /// Set quaternion from roll (x), pitch (y), yaw (z), in that order void setRollPitchYaw(FXdouble roll,FXdouble pitch,FXdouble yaw); /// Return the roll (x), pitch (y), yaw (z) angles represented by the quaternion void getRollPitchYaw(FXdouble& roll,FXdouble& pitch,FXdouble& yaw) const; /// Set quaternion from yaw (z), pitch (y), roll (x), in that order void setYawPitchRoll(FXdouble yaw,FXdouble pitch,FXdouble roll); /// Return the yaw (z), pitch (y), roll (x) angles represented by the quaternion void getYawPitchRoll(FXdouble& yaw,FXdouble& pitch,FXdouble& roll) const; /// Set quaternion from roll (x), yaw (z), pitch (y), in that order void setRollYawPitch(FXdouble roll,FXdouble yaw,FXdouble pitch); /// Return the roll (x), yaw (z), pitch (y) angles represented by the quaternion void getRollYawPitch(FXdouble& roll,FXdouble& yaw,FXdouble& pitch) const; /// Set quaternion from pitch (y), roll (x),yaw (z), in that order void setPitchRollYaw(FXdouble pitch,FXdouble roll,FXdouble yaw); /// Return the pitch (y), roll (x),yaw (z) angles represented by the quaternion void getPitchRollYaw(FXdouble& pitch,FXdouble& roll,FXdouble& yaw) const; /// Set quaternion from pitch (y), yaw (z), roll (x), in that order void setPitchYawRoll(FXdouble pitch,FXdouble yaw,FXdouble roll); /// Return the pitch (y), yaw (z), roll (x) angles represented by the quaternion void getPitchYawRoll(FXdouble& pitch,FXdouble& yaw,FXdouble& roll) const; /// Set quaternion from yaw (z), roll (x), pitch (y), in that order void setYawRollPitch(FXdouble yaw,FXdouble roll,FXdouble pitch); /// Return the yaw (z), roll (x), pitch (y) angles represented by the quaternion void getYawRollPitch(FXdouble& yaw,FXdouble& roll,FXdouble& pitch) const; /// Set quaternion from axes void setAxes(const FXVec3d& ex,const FXVec3d& ey,const FXVec3d& ez); /// Get quaternion axes void getAxes(FXVec3d& ex,FXVec3d& ey,FXVec3d& ez) const; /// Obtain local x axis FXVec3d getXAxis() const; /// Obtain local y axis FXVec3d getYAxis() const; /// Obtain local z axis FXVec3d getZAxis() const; /// Exponentiate quaternion FXQuatd exp() const; /// Take logarithm of quaternion FXQuatd log() const; /// Power of quaternion FXQuatd pow(FXdouble t) const; /// Conjugate quaternion FXQuatd conj() const { return FXQuatd(-x,-y,-z,w); } /// Invert unit quaternion FXQuatd unitinvert() const { return FXQuatd(-x,-y,-z,w); } /// Invert quaternion FXQuatd invert() const { FXdouble m(length2()); return FXQuatd(-x/m,-y/m,-z/m,w/m); } /// Destructor ~FXQuatd(){} }; /// Scaling static inline FXQuatd operator*(const FXQuatd& a,FXdouble n){return FXQuatd(a.x*n,a.y*n,a.z*n,a.w*n);} static inline FXQuatd operator*(FXdouble n,const FXQuatd& a){return FXQuatd(n*a.x,n*a.y,n*a.z,n*a.w);} static inline FXQuatd operator/(const FXQuatd& a,FXdouble n){return FXQuatd(a.x/n,a.y/n,a.z/n,a.w/n);} static inline FXQuatd operator/(FXdouble n,const FXQuatd& a){return FXQuatd(n/a.x,n/a.y,n/a.z,n/a.w);} /// Quaternion and quaternion multiply static inline FXQuatd operator*(const FXQuatd& a,const FXQuatd& b){ return FXQuatd(a.w*b.x+a.x*b.w+a.y*b.z-a.z*b.y, a.w*b.y+a.y*b.w+a.z*b.x-a.x*b.z, a.w*b.z+a.z*b.w+a.x*b.y-a.y*b.x, a.w*b.w-a.x*b.x-a.y*b.y-a.z*b.z); } static inline FXQuatd operator/(const FXQuatd& a,const FXQuatd& b){ return a*b.invert(); } /// Rotation unit-quaternion and vector q . v = (q* . v . q) extern FXAPI FXVec3d operator*(const FXQuatd& q,const FXVec3d& v); /// Rotation a vector and unit-quaternion v . q = (q . v . q*) extern FXAPI FXVec3d operator*(const FXVec3d& v,const FXQuatd& q); /// Quaternion and quaternion addition static inline FXQuatd operator+(const FXQuatd& a,const FXQuatd& b){ return FXQuatd(a.x+b.x,a.y+b.y,a.z+b.z,a.w+b.w); } static inline FXQuatd operator-(const FXQuatd& a,const FXQuatd& b){ return FXQuatd(a.x-b.x,a.y-b.y,a.z-b.z,a.w-b.w); } /// Equality tests static inline FXbool operator==(const FXQuatd& a,FXdouble n){return a.x==n && a.y==n && a.z==n && a.w==n;} static inline FXbool operator!=(const FXQuatd& a,FXdouble n){return a.x!=n || a.y!=n || a.z!=n || a.w!=n;} static inline FXbool operator==(FXdouble n,const FXQuatd& a){return n==a.x && n==a.y && n==a.z && n==a.w;} static inline FXbool operator!=(FXdouble n,const FXQuatd& a){return n!=a.x || n!=a.y || n!=a.z || n!=a.w;} /// Equality tests static inline FXbool operator==(const FXQuatd& a,const FXQuatd& b){ return a.x==b.x && a.y==b.y && a.z==b.z && a.w==b.w; } static inline FXbool operator!=(const FXQuatd& a,const FXQuatd& b){ return a.x!=b.x || a.y!=b.y || a.z!=b.z || a.w!=b.w; } /// Normalize non-zero quaternion such that |Q|==1 static inline FXQuatd normalize(const FXQuatd& q){ return q*Math::rsqrt(q.length2()); } /// Normalize quaternion incrementally; assume |Q| is approximately 1 already static inline FXQuatd fastnormalize(const FXQuatd& q){ return q*((3.0-q.length2())*0.5); } /// Construct quaternion from arc a->b on unit sphere extern FXAPI FXQuatd arc(const FXVec3d& a,const FXVec3d& b); /// Spherical lerp of unit quaternions u,v extern FXAPI FXQuatd lerp(const FXQuatd& u,const FXQuatd& v,FXdouble f); /// Derivative of spherical lerp of unit quaternions u,v extern FXAPI FXQuatd lerpdot(const FXQuatd& u,const FXQuatd& v,FXdouble f); /// Cubic hermite quaternion interpolation extern FXAPI FXQuatd hermite(const FXQuatd& q0,const FXVec3d& r0,const FXQuatd& q1,const FXVec3d& r1,FXdouble t); /// Estimate angular body rates omega from unit quaternions Q0 and Q1 separated by time dt extern FXAPI FXVec3d omegaBody(const FXQuatd& q0,const FXQuatd& q1,FXdouble dt); /// Derivative of unit quaternion q with body angular rates omega (rad/s) extern FXAPI FXQuatd quatDot(const FXQuatd& q,const FXVec3d& omega); /// Calculate angular acceleration of a body with inertial moments tensor M /// Rotation about its axes with angular rates omega, under a torque torq extern FXAPI FXVec3d omegaDot(const FXMat3d& M,const FXVec3d& omega,const FXVec3d& torq); /// Save quaternion to a stream extern FXAPI FXStream& operator<<(FXStream& store,const FXQuatd& v); /// Load quaternion from a stream extern FXAPI FXStream& operator>>(FXStream& store,FXQuatd& v); } #endif